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The. dependence of the thermal creep in a flat channel on the coefficient of accommodation

of tangential momentum with an arbitrary mode of gas flow is studied. The problem is

solved on the basis of a linearized kinetic equation using the BGK (Bhatnager—Gross—Krook)
model for the molecular collision operator. The Maxwell specular-diffuse system is taken
as the boundary conditions.

As is known, the macroscopic movement of gas along an unevenly heated wall is called thermal creep
[1]. It's value is determined by the Knudsen number (Kn), the geometry of the channel, and the nature of the
interaction of the gas molecules with the surface over which the flow occurs.

Many reports devoted to the theoretical study of this effect in a wide range of Knudsen numbers have
been published in recent times. As a rule, the problem has been solved on the basis of the linearized Boltz~
mann equation or statistical models of it. The most varied methods of solving the kinetic equations have
been used for this: the moment method [2, 3], the method of iterations of the moment solutions [4, 5], the
Monte Carlo method [6], and finally, integral methods [7-12]. In all these reports, however, completely
diffuse scattering of the gas molecules by the channel walls was taken as the houndary conditions.

Recently the authors of the present report attempted to describe the effect of the thermomolecular
pressure difference during the arbitrary accommodation of the tangential momentum of molecules incident
on a wall [13]. In doing this it was assumed that the thermal creep is independent of the nature of the inter-
action of the gas molecules with the surface of the channel. Such an assumption is fully confirmed by theory
[14] if one uses the boundary conditions proposed in [15]. As has been indicated earlier [16, 17}, however,
this approach does not take into account the dependence of the disturbance in the Maxwellian distribution
function on the velocity of the molecules reflected by the wall.

In the present report we use stricter boundary conditions, proposed again by Maxwell, according to
which a portion e of the molecules incident on the wall are scattered diffusely from it while a portion (1—e)
are reflected specularly. The parameter £ has also received the name of the coefficient of accommodation
of tangential momentum. Of course, the Maxwellian boundary conditions are semiempirical in the sense
that the parameter ¢ cannot be calculated theoretically. Nevertheless, its introduction into the theory
proves very useful, firstly, because it helps to at least qualitatively estimate the effect of the wall on the
phenomenon studied, and secondly, because it allows one from a comparison of theoretical and experimen-
tal data to extract such an important characteristic of the gas—solid interaction as the coefficient of ac-
commodation of tangential momentum.

A procedure which the authors used earlier [18] in a study of plane Poiseuille flow is applied in the
present work.

Letus consider agas between infinite parallel plates located at X =£d/2 (d is the distance between the
plates) whose state is disturbed by a longitudinal temperature gradient. Macroscopic movement of the gas
occurs in this case, characterized by a velocity U; and called thermal creep.
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The disturbance of the gas is assumed to be small enough that its state can be described by a dis-
tribution function which differs insignificantly from a Maxwellian distribution:

F@, X, 2)=f,(0, 11+ o, X),
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where n and T are the numerical density and the temperature of the gas, respectively; m is the mass of a
molecule; k is Boltzmann's constant; V is the proper velocity of a molecule and z is the longitudinal coordi-
nate, which coincides with the axis of symmetry of the flat channel. In this case with allowance for (1) the
fundamental kinetic equation is linearized and for the BGK (Bhatnager— Gross —Krook) model of the inter-
molecular collision operator [19] is written in the following form:
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Here we introduce the dimensionless values
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where T, is the average temperature of the system; A is the mean free path of the molecules, calculated
from the viscosity coefficient for solid spherical molecules at the temperature T.

Further, one must allow for the discontinuous nature of the distribution function near the channel
walls at cx = 0, i.e.,
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Then the Maxwellian boundary conditions for the distribution function take the from
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The boundary conditions for the disturbance function follow from this with allowance for the linearization
of (1): '
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In addition, the symmetry of the problem requires that
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Equation (2) can be formally integrated if one temporarily considers u; to be a known function of the
coordinates:

hi(x,—c)).—_—exp(——f— x){exp(?u 2? )hi($—;, E’)%— ;’ ([QSut(s)—r(cz——%)]exp(%s)ds}. M

x x x .
7172 x

The integration constants h 1/2, _5) in Egs. (7) mustbe determined from the boundary conditions (5) and the
conditions (6) of symmetry of the problem. As a result it is easy to obtain the following values of the sought

constants:
*1/2
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TABLE 1. Values of Thermal Creep @ for Different Values of the
Parameters § and ¢

£
)
t 0,98 0,96 0,94 0,92 0,99
0,01 1,2358 1,2710 1,3074 1,3450 1,3840 1,4242
0,03 0,9635 0,9884 1,0140 1,0404 1,0676 1,0958
0,05 0,8452 0,8656 0,8866 0,9083 0,9306 0,9537
0.07 0,7707 0,7884 0,8066 0,8254 0,8447 0,8645
0,09 0,7170 0,7327 0,7489 0,7656 0,7828 0,8004
0,1 0,6949 00,7099 0,7253 0,7412 0,7574 0,7742
0,3 00,4842 0,4920 0,5000 00,5081 0,5165 0,5250
4,5 06,3985 §,4036 0,4089 0,4142 0,4197 0,4253
0,7 0,3463 0,3500 0,3537 0,3576 0,3615 0,3654
0,9 0,3096 0,3124 0,315t 0,3180 0,3209 0,3238
i 0,2948 0,2972 0,2996 0,3021 90,3046 0,3071
2 0,2060 0,2067 04,2073 0,2080 01,2086 0,2093
3 0,1615 0,1615 0,1616 0,1617 0,1618 01,1619
4 0,1334 0,1333 0,1331 0,1330 0,1328 0,1327
5 0,1138 0,1136 0,1133 0,1131 0,1128 | 0,1126
6 60,0993 0,0990 0,0087 0,0984 0,0981 0,0978
7 0,0880 0,0877 0,0874 0,0871 0,0867 0,0864
8 0,0790 0,0787 0,0784 0,0781 0,0777 0,0774
9 0,0716 0,0713 0,0710 0,0707 0,0704 0,0701
10 0,0655 0,0652 0,0649 0,0646 | 0,0643 | 0,0640

By definition the macroscopic velocity of the gas is given by the following expression:
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Since the functions hz(x,¢) are fully determined by Eqs. (7) and (8) there is no great difficulty in ob-

taining from (9) the integral fransfer equation for the thermal creep velocity:
+172
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It is easy to see that in the particular case of fully diffuse scattering of the molecules by the channel
walls (e = 1) Eq. (10) coincides with that presented in [9].

The Bubnov—Galerkin method [20] is used in the present work for the solution of Eq. (10).

Following the basic idea of this method, one must choose a system of base functions. From physical
considerations it is convenient to choose even functions of the type {x?k} withk = 0, 1, 2, ... . The rapid
convergence of the method used for the chosen base allows one to be confined to only two terms in the ex-
pansion of the unknown function ¥y:

Vixa, a4 ... (12)

443



As calculations show, taking into account the third term in the expansion ¥ (x) corrects the result ob-
tained by less than 1%,

Then one must substitute (12) into the original Eq. (10) and demand the orthogonality of the equation
obtained to the base functions [1, x*]. In this case the scalar product of any two functions F(x) and G(x) in
the Hilbert space Ly(~1/2, +1/2) is determined as

+172
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Thus, we obtain the following system of algebraic equations for the determination of the coefficients

a, and g, of the expansion (12):
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Here K@ is an integral operator corresponding to the kernel K(x, s) of (11) and acting on the arbitrary
function @.

Since the function ¥4(x) is determined by Eqs. (12), (14), and (15), one can write an expression for the
dimensionless gas flux characterizing the thermal creep in a flat channel:

+12 4172
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In the limiting cases of an almost free-molecular mode of flow (§ — 0) and of a viscous mode of flow
with slippage (§ — «) the general equation (16) is transformed into the following simple equations:

Qt(ﬁ—"O, 8):“2:8%, an
A 1
Q (60, &) = —5L,where A = 3—;—% . (18)

The coefficient A; is called the thermal creep constant. The dependence of this constant on the coef-
ficient of accommodation of tangential momentum was studied in [14] on the basis of the BGK model. As
a result an exact expression of the type A¢ = 1/2 + 0.2662 ¢, which agrees well with Eq. (18), was obtained
by the method of "elementary solutions."

The results of the calculation of Q; by Eq. (16) for intermediate values of the parameter é of rarefac-
tion of the gas and for certain values of the coefficient of accommodation of tangential momentum € are
presented in Table 1 (the calculations were performed on a BESM-4M computer).

As seen from the table, when § ~3.5 the thermal creep does not depend at all on the nature of the in-
teraction of the molecules with the channel wall. At the same time, with an increase in the portion of the
molecules specularly reflected from the wall it increases when 6 < 3.5 and decreases when 6 > 3.5.

Such a dependence of the thermal creep on the coefficient of accommodation of tangential momentum
&€ must be taken into account in a study of the effect of the thermomolecular pressure difference and ther-
mophoresis. '

NOTATION

U is the velocity of thermal creep;
T is the gas temperature;

444



is the mass of a molecule;

m
v is the proper velocity of a molecule;
T = (d/TVdT/dz is the dimensionless temperature gradient;
8 =1/ (2Kn) is the parameter of gas rarefaction;
13 is the coefficient of accommodation of tangential momentum;
Q is the dimensionless flux of thermal creep averaged over channel cross section;
A is the thermal creep constant.
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